
 ISSN: 2096-3246

Volume 55, Issue 01, Jan, 2023

Volume 55, Issue 01, Jan, 2023

Data Needs Analysis for Scheduling Kepler Cloud-Based

Workflow
N.SRINADH REDDY

1
,RAJA BHARGAV

2
,P.FIRIDOZ KHAN

3
,

ASSOCIATE PROFESSOR
1
,
2
,ASSISTANT PROFESSOR

3
,

DEPARTMENT OF CSE

PBR VISVODAYA INSTITUTE OF TECHNOLOGY AND SCIENCE::KAVALI

Keywords:
Kepler, cloud workflow, workflow

scheduling, scheduling information.

Abstract

Scientists have relied on the Kepler scientific workflow system

to help them automate experiments across many different

fields using distributed computing platforms. An assigned

director oversees the execution of a process in Kepler. Users

must still choose the computing resources that will run the

workflow's tasks. A workflow scheduler that can allocate

workflow tasks to resources for execution is needed to further

reduce the technical effort required by scientists. We evaluate

numerous cloud workflow scheduling methods to determine

what data must be exposed for a scheduler to successfully plan

for the execution of a Kepler process in the cloud. We explain

the value by discussing the advantages of each different kind

of data about workflow jobs, cloud resources, and cloud

service providers.

This work is licensed under a Creative Commons Attribution Non-Commercial

4.0 International License.

Introduction

 Scientific workflow management systems, such as Kepler [1], have been used for facilitating eScience by

providing tools to orchestrate scientific computations to be executed automatically. These systems can execute

workflows on local resources, or on distributed environments such as the grid, which provides supercomputing

power necessitated by intensive computations in scientific applications [2]. As the cloud computing emerges as

a new computing paradigm, it has become possible to execute scientific workflows on cloud resources [3],

which are allocated on demand reducing hardware investment. Because of several benefits offered by the cloud,

more research effort has been directed toward the execution of workflows in cloud computing environment. An

essential mechanism for executing a workflow efficiently in the cloud is a scheduler, which decides on the

mapping of the tasks (or actors in Kepler) in the workflow to cloud resources. To control Kepler workflow

execution, several “directors” are available for users to choose for their workflows [4]. However, the directors in

Kepler do not perform scheduling of actors to compute resources; users have to specify the resources on which

the actors are to be executed. In order forKepler to relieve scientists from technical complication, a scheduler

may be necessary. Toward a development of this scheduler, in this paper we identify the types of information

that should be supplied by the Kepler environment to its scheduler based on existing cloud workflow scheduling

techniques.

Unlike scheduling in the grid, workflow scheduling in the cloud context needs to address new issues specific to

cloud computing. For example, instead of trying to finish a workflow execution as soon as possible, cloud

workflow schedulers also have to control the cost incurred by the execution in the cloud. The resources in the

cloud, being virtual machines in this case, are more homogeneous and are dependent upon the request from

users (or from the schedulers) whereas grid resources are more heterogeneous and are not controlled by users

[3]. Such issues shift the way in which scheduling techniques are designed, which therefore require additional

information for scheduling. This paper explores a number of cloud workflow scheduling techniques that utilize

information specific to cloud computing environment in their scheduling processes. However, as cloud

computing and cloud providers evolve, some techniques (and its required information) may no longer be as

useful. Thus, we also discuss and justify each of the information identified whether it is of important in the

current cloud computing context. The structure of this paper is as follows. Section 2 presents a review of cloud

N.SRINADH REDDY,RAJA BHARGAV,P.FIRIDOZ KHAN., 2023 Advanced Engineering Science

workflow scheduling techniques. Section 3 discusses and summarizes the use of such information to address

issues specific to cloud environment. Section 4 then concludes the paper and points toward our future work.

 Cloud Workflow Scheduling Techniques

 Before the emergence of cloud computing, scientific workflows had usually been executed in the grid and

extensive effort had been put into grid workflow scheduling resulting in several techniques over many years.

These techniques, however, may not be applicable to scheduling workflows in the cloud because of the

differences between the grid and the cloud context. Thus, researchers have diverted their effort to cloud

workflow scheduling. Scheduling techniques have been developed in response to the evolving cloud technology

and applications that runs in the cloud. More information regarding workflows and cloud resources has become

necessary in a scheduling process. Workflow scheduling in the grid usually relies on three common metrics,

which are the execution time of tasks, the wait time on grid resources, and the time required for file staging or

data transfer time [5]. Additional metrics or information may be utilized by some techniques to address specific

issues such as resource competition [6], fault tolerance [7], and reliability [8]. With cloud computing, compute

resources or virtual machines can be requested at runtime while users are charged for the use of such resources.

Therefore, the three common metrics are no longer sufficient as the total execution cost has become a more

important metric. This section explores several cloud workflow scheduling techniques to identify necessary

scheduling information specific to cloud computing. We present these techniques in chronological order so that

it may be possible to illustrate the evolution of the researches in this area. Although many grid workflow

scheduling techniques focus on minimizing makes pan, a few techniques also address execution cost in utility

grid. For example, Yu et al. [9] proposed a technique that partitions a workflow into branches based on

synchronization tasks and distributed the global deadline among such partitions. The cost is then minimized for

each partition while trying to preserve the deadline of the partition. This early technique considers the usage cost

of grid resources and network cost for transferring data. In 2009, Liu [10] proposed, among a number of

algorithms in his thesis, the “CTC” algorithm. This algorithm addresses two objectives that are to minimize

execution cost within user-defined deadline and to minimize makes pan within user-defined budget. As one of

earlier techniques, this algorithm considers execution time, data transfer time, and compute cost to allocate

cheaper cloudresources to workflow tasks. The estimated total cost and makes pan are available for user to make

any adjustment of deadline and budget during execution and the algorithm reschedules as necessary. Pandey et

al. [11] employ particle swarm optimization (PSO) to schedule workflows on cloud compute resources. PSO is

used to generate a schedule for tasks that are ready to execute in each scheduling round.

The optimization of the PSO considers the compute cost and the data communication cost to minimize total

execution cost. The technique tries to avoid communication cost when data files are larger, and is able to

balance the load on all resources based on their cost. The literature does not explicitly consider task execution

time and data transfer time, and thus does not address time constraint. However, the aspect of time is expressed

as the inverse proportion to the compute cost. Another technique that employed a meta-heuristic was proposed

by Barrett et al. [12]. This technique uses genetic algorithm to generate multiple schedules based on makes pan,

compute cost, and data transfer cost. Then among these schedules, a Markov Decision Process chooses the

solution based on resource loads and the hour of the day. An algorithm for scheduling tasks in hybrid cloud,

called “RC2 ” was proposed by Lee and Zumaya [13] to achieve reliable completion. An initial schedule is first

calculated based on private cloud (or locally owned resources) to minimize cloud resource usage. If a delay

occurs at a local resource, tasks that have been scheduled to that resource may be rescheduled to cloud resources

to compensate the delay. The RC2 algorithm considers task execution time and data transfer time to calculate

makes pan in its scheduling process. However, this algorithm does not explicitly consider computed cost. In

2011, Bettencourt and Madeira [14] proposed the “HCOC” algorithm to schedule cloud workflows within

deadline while minimizing compute cost. The algorithm assumes hybrid cloud model consisting of a private

cloud of heterogeneous resources and a public cloud of (unlimited) resources. The scheduling process starts by

using the grid workflow scheduling algorithm called “PCH” [15] to generate an initial plan for the private cloud

based on execution time and data transfer. If the initial schedule is expected to violate the deadline, rescheduling

is triggered to select and reassign tasks to public cloud resources. The selection of public cloud resources is

based on cost, performance and number of cores on cloud resources. The authors also suggested later that it is

necessary to consider an overhead cost incurred by a cloud resource being idle while waiting for input data to be

transferred [16].

However, this had not been included in the HCOC algorithm. In addition to task execution time, data transfer

time, and compute cost that are used in the techniques described so far, the “PBTS” algorithm proposed by

Byun et al. [17] begins to consider other aspects in the cloud. To addresses tasks implementing the MapReduce

[18] programming model, the algorithm assumes that a task may requires varying numbers of virtual machines.

In order to minimize the cost of cloud resources while maintaining deadline, this algorithm, as the extension of

 ISSN: 2096-3246

Volume 55, Issue 01, Jan, 2023

Volume 55, Issue 01, Jan, 2023

the authors’ earlier algorithm called “BTS” [19], divides a workflow schedule into partitions based on the

charge period of cloud resource. For example, users are charged based on hourly rates for using Amazon EC2

services [20]. A workflow is scheduled so that the virtual machine hours are minimized by trying to fit tasks in

the charge periods. This consideration is necessary because a virtual machine may be utilized for only a short

time and then left idle while users have to pay the price for the whole period, resulting in a higher total cost [17].

It is also mentioned in this work that the overhead for starting virtual machines should be considered. However,

this issue is not addressed by the PBTS algorithm. The most recent technique in our review is proposed by

Abishai et al. [21], appearing in 2013. Similar to the PBTS [17], this technique, consisting of the “IC-PCP” and

the “IC-PCPD2” algorithms, also considers usage charge period in its scheduling process and tries to utilize the

remaining time of each period as much as possible. The IC-PCP algorithm iteratively determines a critical path

and its deadline then assigns all tasks in the path to a machine that can execute them within the deadline. The

IC-PCPD2 algorithm, instead, distributes the workflow deadline to each task and assigns each task to a virtual

machine that can execute the task within its deadline. This technique assumes that theexecution of a workflow

takes place in a single cloud availability zone thus ignoring data transfer cost between virtual machines. From

the cloud workflow scheduling techniques described so far, the information that has been considered by each

technique can be summarized in Table 1 with the cloud execution model specified below each technique. The

three most essential metrics, which are used in most of the techniques described in this paper, are task execution

time, compute cost, and data transfer time because they are required for estimating cost and makes pan. In the

next section, we discuss the applicability of the other five in the current cloud computing context.

Table 1: Summary of the information utilized by cloud workflow scheduling techniques

Discussion on Information Utilized in Workflow Scheduling

The inclusion of the cost for transferring data in and out of a cloud has received less attention than the three-

essential metrics. The inclusion of this information may depend on the assumption made by each technique.

Infrastructure-as-a-Service cloud providers such as Windows Azure [22] and Amazon EC2 [20] charge minimal

cost for transferring data to and within their cloud centers. If it is assumed that a workflow execution takes place

only in a single cloud, this cost will be incurred mostly by retrieving output data out of a cloud center at the end

of the execution. If a workflow is executed in a hybrid cloud, then the cost is also dependent on the data

dependencies between tasks because data may need to be transferred from cloud center to private resources

during execution and vice versa. In a scenario of “intercloud” [23], where a workflow is executed using

resources from multiple cloud providers, the cost incurred by transferring data across providers become more

complicated due to different pricings. Nevertheless, this cost is also subject to the size of data being transferred

throughout an execution. Thus, for a system supporting mainly data-intensive workflows, it is necessary to

consider data transfer cost in the scheduling mechanism. The more advanced techniques described in this paper

(PBTS and IC-PCP) consider usage charge period of virtual machines. This consideration is significant if a

workflow is composed mostly of tasks whose execution times are shorter than the charge period. Otherwise, the

allocated virtual machines would be underutilized and users would have to pay higher for idle time [17, 21].

However, as of2013, Windows Azure and Google Compute Engine charge their virtual machines per minute.

N.SRINADH REDDY,RAJA BHARGAV,P.FIRIDOZ KHAN., 2023 Advanced Engineering Science

The shorter charge period renders the consideration of charge period less beneficial [21], which may not justify

the complexity of the scheduling algorithms and implementations. Nonetheless, some cloud providers such as

Amazon EC2 still charges their service based on hourly rate. The consideration of charge period may still be

useful until most cloud providers adjust to shorter charge period. A shorter charge period makes it easier to

allocate a virtual machine for a short period of time for a smaller task at reduced cost. However, doing so may

lead to undesirable overhead. As mentioned in [3, 16, 17], the overhead of starting up a virtual machine should

be considered. A virtual machine, though assuming its image is stored in the cloud, takes time before it is ready

to execute a task (such as booting OS) [3]. Also, the machine may have to idly wait for input data to be

transferred before the execution can start [16]. These issues introduce additional cost and time in an execution.

A scheduler needs to consider this overhead to decide whether to allocate a new virtual machine (to meet a

deadline) and/or to terminate one (to reduce cost when it is no longer required). As various instance types of

virtual machine are made available by cloud providers, a scheduler using algorithm such as HCOC can select an

instance type based on number of cores to execute tasks in different workflow paths on the same virtual

machine. This helps minimizing data transfers between tasks and reducing cost per core when a workflow has a

high level of parallelism [14]. As for tasks implementing MapReduce model, the consideration shifts from the

number of cores to the number of virtual machines. In most of the existing cloud and grid workflow scheduling

techniques, a task is usually assumed to be executed by only a single resource to reduce scheduling complexity.

Since MapReduce applications are usually executed on multiple worker machines in parallel, neglecting this

virtual machine requirement may lead to degraded performance. This information is thus necessary, as shown in

the PBTS algorithm [17], which allows a task to specify either static or adjustable number of virtual machines.

 Information Requirement for Cloud Workflow Scheduler

 In summary, for an implementation of a workflow scheduler in the Kepler system, at least the three essential

metrics namely execution time, data transfer time, and compute cost need to be provided in order to estimate

cost and makes pan. The execution time can also be expressed as virtual machine performance (e.g., MIPS) and

the size of task (e.g., millions of instructions) [16]. Alternatively, the scheduler can maintain a record of the

execution time of each task on each virtual machine within itself (or as a part of provenance) to later determine

expected execution times. The data transfer time can be expressed as the size of data to be transferred and the

bandwidth of network links (which, in the simplest manner, can be recorded within the scheduler to estimate the

expected transfer time) [6]. The data transfer costs of transferring data to and from each cloud provider in each

availability zone (or region) should also be supplied to support scheduling of data-extensive workflows. The

number of cores specified in each virtual machine instance type should be exposed to the scheduler to exploit

workflow parallelism. The number of virtual machines required by each task is required to support distributed

programming paradigm. This number may be specified (by users) as a parameter attached to the actor

representing the task. The overhead for starting virtual machine of different types, although has not been clearly

addressed in any work presented here, should be tracked to justify an allocation and a termination [3]. This

tracking could be implemented inside the scheduler itself. Lastly, for the usage charge period, it is our opinion

that it may become unnecessary. As more cloud providers shorten their charge periods, its usefulness diminishes

and thus may not justify the overhead of complex scheduling process and implementation.

Conclusion and Future Work

In this research, we investigate alternative methods for scheduling cloud-based workflows and extrapolate the

data that the Kepler system's environment should provide for deploying such a scheduler. The value of various

forms of data in the modern era of cloud computing is examined. Scheduling actors in a workflow onto

computational resources is handled by "Nimrud Director" [26], which is based on our prior work developing a

prototype scheduler for the tool "Nimrud/K" [6, 24, 25], which is built on top of the Kepler system. A cloud-

based process scheduler may be implemented in the Kepler system, and this may be a viable alternative.

However, since it was originally designed for a grid environment, the prototype scheduler overlooked this

revolutionary feature of cloud computing. In addition, the Kepler system may not provide all of the statistics

outlined in this work. This includes compute cost, data transmission cost, and the number of cores in each

virtual machine. In practice, this may need the inclusion of a supplementary component. There are numerous

methods that make assumptions about workflow and cloud execution settings beyond the information and

concerns mentioned in this research, including task requirement and user interaction [10]. As a follow-up, we're

doing a thorough literature review to compile a taxonomy that may guide future innovation in cloud workflow

scheduling methods and tools.

References

[1] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A. Lee, J. Tao, and Y. Zhao, "Scientific workflow

management and the Kepler system," Concurr. Comput. : Pract. Exper., vol. 18, pp. 1039-1065, 2006.

 ISSN: 2096-3246

Volume 55, Issue 01, Jan, 2023

Volume 55, Issue 01, Jan, 2023

[2] E. Deelman, D. Gannon, M. Shields, and I. Taylor, "Workflows and e-Science: An overview of workflow system features and

capabilities," Future Generation Computer Systems, vol. 25, pp. 528-540, 2009.

[3] G. Mateescu, W. Gentzsch and C. J. Ribbens, "Hybrid Computing—Where HPC meets grid and Cloud Computing," Future

Generation Computer Systems, vol. 27, pp. 440-453, 2011.

[4] Kepler User Manual. Available: https://kepler-project.org/users/documentation Accessed January, 2014.

 [5] J. Yu, R. Buyya and K. Ramamohanarao, "Workflow Scheduling Algorithms for Grid Computing," in Metaheuristics for

Scheduling in Distributed Computing Environments, ed, 2008, pp. 173-214.

[6] S. Smanchat, M. Indrawan, S. Ling, C. Enticott, and D. Abramson, "Scheduling parameter sweep workflow in the Grid based on

resource competition," Future Generation Computer Systems, vol. 29, pp. 1164-1183, 2013.

[7] K. Plankensteiner, R. Prodan and T. Fahringer, "A new fault tolerance heuristic for scientific workflows in highly distributed

environments based on resubmission impact," in Proceedings of the 5th IEEE International Conference on e-Science (e-Science '09),

Oxford, UK, 2009, pp. 313-320.

[8] Y. Tao, H. Jin, S. Wu, X. Shi, and L. Shi, "Dependable Grid Workflow Scheduling Based on Resource Availability," J. Grid

Comput., vol. 11, pp. 47-61, 2013.

 [9] J. Yu, R. Buyya and C. K. Tham, "Cost-based scheduling of scientific workflow applications on utility grids," in Proceedings of the

First International Conference on e-Science and Grid Computing, 2005, pp. 140-147.

 [10] K. Liu, "Scheduling algorithms for instance-intensive cloud workflows," PhD Thesis, Faculty of Information and Communication

Technologies, Swinburne University of Technology, 2009.

[11] S. Pandey, L. Wu, S. M. Guru, and R. Buyya, "A Particle Swarm Optimization-Based Heuristic for Scheduling Workflow

Applications in Cloud Computing Environments," in Proceedings of the 24th IEEE International Conference on Advanced Information

Networking and Applications (AINA), 2010, pp. 400-407.

 [12] E. Barrett, E. Howley and J. Duggan, "A Learning Architecture for Scheduling Workflow Applications in the Cloud," in

Proceedings of the 9th IEEE European Conference on Web Services (ECOWS), 2011, pp. 83-90.

[13] Y. C. Lee and A. Y. Zomaya, "Rescheduling for reliable job completion with the support of clouds," Future Generation Computer

Systems, vol. 26, pp. 1192-1199, 2010.

 [14] L. F. Bittencourt and E. R. M. Madeira, "HCOC: A Cost Optimization Algorithm for Workflow Scheduling in Hybrid Clouds,"

Journal of Internet Services and Applications, vol. 2, pp. 207-227, 2011.

[15] L. F. Bittencourt and E. R. M. Madeira, "A performance-oriented adaptive scheduler for dependent tasks on grids," Concurr.

Comput. : Pract. Exper., vol. 20, pp. 1029-1049, 2008.

[16] L. F. Bittencourt, E. R. M. Madeira and N. L. S. d. Fonseca, "Scheduling in hybrid clouds," IEEE Communications Magazine, vol.

50, pp. 42-47, 2012.

[17] E. Byun, Y. Kee, J. Kim, and S. Maeng, "Cost optimized provisioning of elastic resources for application workflows," Future

Generation Computer Systems, vol. 27, pp. 1011-1026, 2011.

[18] J. Dean and S. Ghemawat, "MapReduce: simplified data processing on large clusters," Commun. ACM, vol. 51, pp. 107-113, 2008.

 [19] E. Byun, Y. Kee, J. Kim, E. Deelman, and S. Maeng, "BTS: Resource capacity estimate for time-targeted science workflows,"

Journal of Parallel and Distributed Computing, vol. 71, pp. 848-862, 2011.

[20] Amazon EC2. Available: http://aws.amazon.com/ec2/ Accessed November, 2013.

[21] S. Abrishami, M. Naghibzadeh and D. H. J. Epema, "Deadline-constrained workflow scheduling algorithms for Infrastructure as a

Service Clouds," Future Generation Computer Systems, vol. 29, pp. 158-169, 2013.

[22] Windows Azure: Infrastructure Services. Available: http://www.windowsazure.com/enus/solutions/infrastructure/ Accessed

November, 2013.

[23] R. Buyya, R. Ranjan and R. N. Calheiros, "InterCloud: Utility-Oriented Federation of Cloud Computing Environments for Scaling

of Application Services," in Algorithms and Architectures for Parallel Processing. vol. 6081, C.-H. Hsu, et al., Eds., ed: Springer Berlin

Heidelberg, 2010, pp. 13-31.

[24] D. Abramson, C. Enticott and I. Altintas, "Nimrod/K: towards massively parallel dynamic grid workflows," in Proceedings of the

2008 ACM/IEEE conference on Supercomputing, Austin, Texas, 2008.

